Hypothesis testing Basic concepts and examples

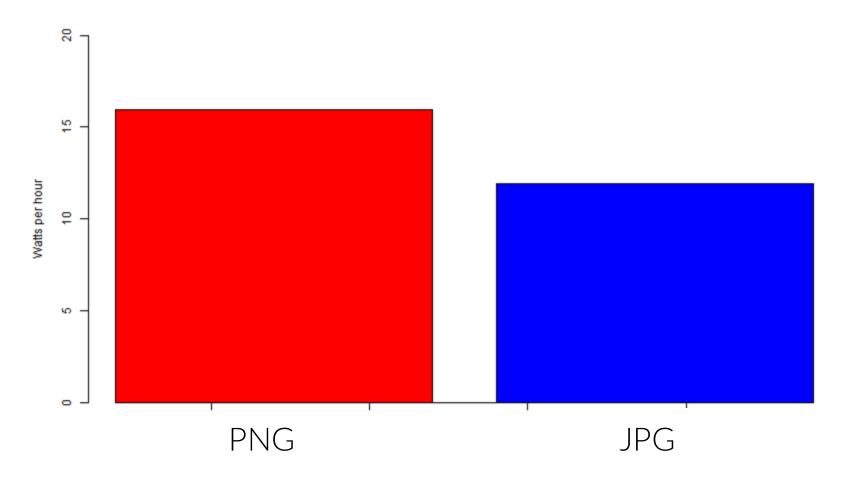
Ivano Malavolta

Quick Recap: Hypotheses

Hypothesis: a formal statement about a phenomenon

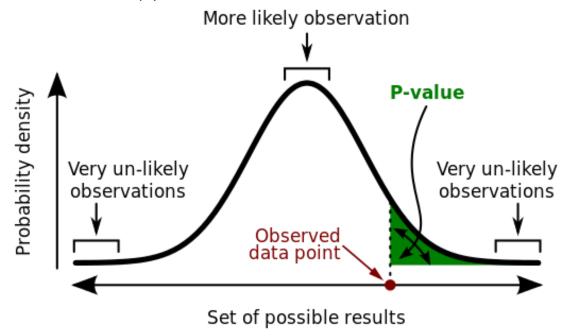
• Null hypothesis H_0 : no real trends or patterns in the experiment setting

 Alternative hypothesis H_a: there are real trends or patterns in the experiment setting


Type of Hypotheses

- Research Hypothesis: a statement of what we believe will be the outcome (from GQM questions)
 e.g. "Using different image encoding algorithms implies different energy consumption".
- Statistical hypothesis: the formalization of our research hypothesis. e.g. H_1 : $avg(P_{PNG}) < avg(P_{JPG})$

Hypotheses may be only rejected, never confirmed!


Observation and Significance

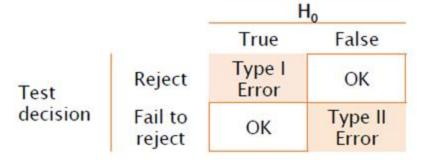
...how do we know we were not just lucky?

- p-value: the probability of obtaining an effect at least as extreme as the one in our sample data
 - if the null hypothesis is true

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

• p = $Pr(observation | H_0)$

• If the P-value is "low enough", we can **reject** the null hypothesis (i.e., consider it extremely unlikely)


- If the P-value is close to 1, there is no difference between groups other than that due to random variation
 - → the null hypothesis is confirmed

- Type I error (false positive)
 - we conclude the existence of a trend\pattern when there actually is not
 - $\alpha = Pr(reject H_0 | H_0 is true)$

- Type II error (false negative)
 - we neglect the existence of a trend\pattern when there actually is one
 - $\beta = Pr(confirm H_0 | H_0 is false)$

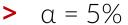
Observation and Significance: power

- Power: the opposite of type II errors
 - 1 β

Power is the probability of actually observing a true effect

Observation and significance: cut-offs

- $\alpha = 0.05 (5\%)$
 - Confidence = 1 α
 - If p < 0.05 we are 95% confident of rejecting H₀
- $\beta = 0.20 (20\%)$
 - Power = 80%
 - We allow a 20% rate of false negatives
- Those cut-offs values are empirically defined

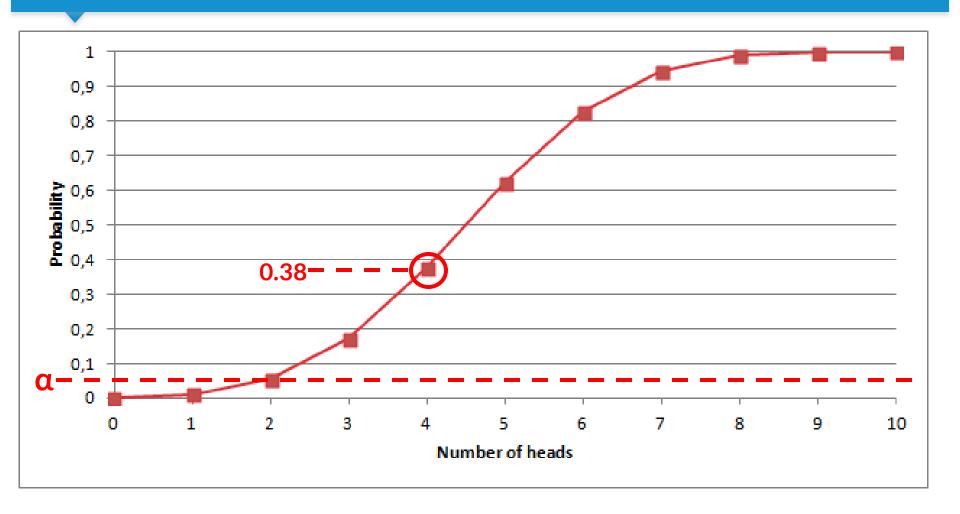


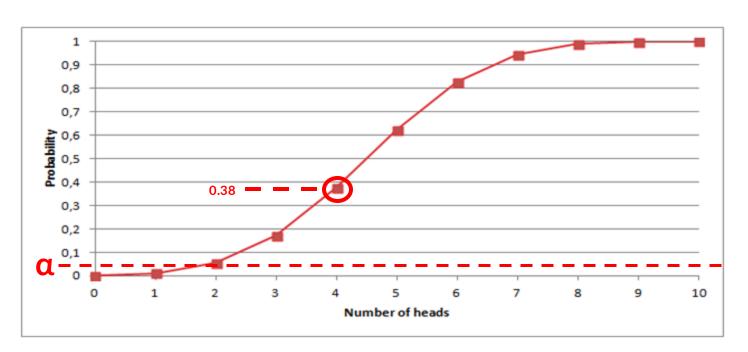
 Conjecture: the coin is tricky and disfavours heads

• Consequence: after a series of tosses, number of heads is smaller than number of tails

- Hypotheses
 - H_0 : Heads = Tails = #Tosses/2
 - assuming that the initial position of the coin is balanced ¹
 - H₁: Heads < Tails

Experiment Result: 4 heads in 10 trials




- Hypothesis testing: Assuming H₀ is true, what is the probability of having 4 or less heads in 10 trials?
 - p-value
- Binomial distribution
 - probability of heads/tails : 0.5
 - number of trials: 10

- p-value > α
 - we cannot reject the null hypothesis
- If we had 2 or less heads in 10 trials, we could have

Hypothesis testing: pitfalls

- Statistical significance does not prove causation
 - context analysis and study design are crucial

- Check sample size and power of your test
 - "evidence of no effect" is rather "no evidence of effect"
 - "Low statistical power" validity threat
- Over-emphasis over p-value
 - a significant p-value does not mean effect is relevant

Readings

Chapter 10 (section 3)

Chapter 6

Acknowledgements

 Coin toss example and other content from Empirical Methods in Software Engineering, Marco Torchiano, Politecnico di Torino - http://softeng.polito.it/EMSE/

Giuseppe Procaccianti's lectures at VU

